

This data sheet
interacts with

HepcoMotion ${ }^{\circledR}$

No. 3 Load Life Information

The load capacity and life expectancy of HepcoMotion ring slides, segments and track systems is determined by many factors including the ring size, the type and number of bearings, the presence of lubrication, the magnitude and direction of loads, the speed and the distance travelled.
It is usual to run systems at much less than the maximum load to prolong life, which can be calculated using the data and formulae in this datasheet. For calculation purposes, systems fall into two categories, those where a carriage runs on a ring slide, segment or track system and those where a ring slide is captivated and rotates in a number of bearings (or the similar arrangement where the ring slide is stationary and the bearings and load rotate).
Where possible, systems should be oiled using Hepco lubricators 37 of the PRT2 catalogue and/or the bleed lubrication system 52. This will greatly extend system life.

Systems with carriages

When calculating the life, first the load on each carriage should be resolved into the direct load components L_{1} and L_{2} and moment load components M, M_{v} and M_{s}.

Carriage Load Capacities

Capacities are shown for both 'dry' and 'lubricated' conditions - this refers to the bearing and slide ' V ' contact, since all bearings are lubricated internally for life.

Values are based on shock-free duty.

Carriage Part Number	Dry System (Twin and DR Type Bearings)					Lubricated System (Twin Type Bearings)					Lubricated System (DR Type Bearings)				
	$L_{1}($ max $)$	$L_{2}($ max $)$	$\mathrm{Ms}_{\text {(max) }}$	$\mathbf{M V}_{\mathbf{V} \text { (max) }}$	$M_{\text {(max) }}$	$L_{1(\text { max })}$	$\mathbf{L}_{2(\text { max })}$	$\mathbf{M s}_{\mathbf{S} \text { (max) }}$	$\mathbf{M V}_{\mathbf{(m a x})}$	$M_{\text {(max) }}$	$L_{1(\text { max })}$	$L_{2}($ max $)$	$\mathbf{M s}_{\mathbf{S} \text { (max) }}$	$\mathbf{M V}_{\mathbf{V} \text { (max) }}$	$M_{\text {(max) }}$
	N	N	Nm	Nm	Nm	N	N	Nm	Nm	Nm	N	N	Nm	Nm	Nm
FCC 1293	90	90	0.5	1	1	240	240	1.3	2.7	2.7	Not Available				
FCC 12127	90	90	0.5	1	1	240	240	1.3	2.6	2.6	Not Available				
FCC 20143	180	180	1.6	2.5	2.5	500	400	4.5	5.5	7	760	1200	7	16	10
FCC 20210	180	180	1.6	2.7	2.7	500	400	4.5	6	7.5	760	1200	7	18	11
FCC 25159	400	400	4.5	8.5	8.5	1280	1200	14	25	27	1600	3000	18	64	33
FCC 25255	400	400	4.5	8	8	1280	1200	14	23	25	1600	3000	18	60	31
FCC 25351	400	400	4.5	8.5	8.5	1280	1200	14	24	27	1600	3000	18	63	33
BCP 25	400	400	4.5	15	15	1280*	1200**	$14^{* 1}$	$45^{* 1}$	45^{*}	1600 *1	3000**	$18 * *$	110*	60*1
FCC 44468	800	800	16	28	28	3200	2800	64	95	110	3600	6000	73	210	120
FCC 44612	800	800	16	29	29	3200	2800	64	100	115	3600	6000	73	220	130
BCP 44	800	800	16	40	40	3200**	2800**	64*	$140^{* 1}$	$160{ }^{* 1}$	3600**	6000*1	$73^{* 1}$	300* ${ }^{\text {* }}$	180*
FCC 76799	1800	1800	64	85	85	7200	6400	250	300	340	10000	10000	360	470	470
FCC 761033	1800	1800	64	105	105	7200	6400	250	360	410	10000	10000	360	570	570
FCC 761267	1800	1800	64	120	120	7200	6400	250	420	480	10000	10000	360	670	670
FCC 761501	1800	1800	64	140	140	7200	6400	250	480	550	10000	10000	360	770	770
BCP 76	1800	1800	64	115	115	7200*	6400*	$250{ }^{* 1}$	415*	460**	10000**	10000**	$360{ }^{\text {* }}$	650*1	650*

The $L_{2} \& M_{v}$ load capacities for carriages using floating bearings 36 of the PRT2 catalogue are the same as is shown above for DR bearings. The $L_{1} \& M_{s}$ load capacities for carriages using floating bearings are zero (they are free to float in these directions). Please note that bogie carriages (BCP) are not available with floating bearings.

To determine life, calculate the load factor L_{F} using equation [1] below, then use equation [3] or [4] to determine life for the system.

$$
\text { [1] } L_{F}=\frac{L_{1}}{L_{1(\max)}}+\frac{L_{2}}{L_{2(\max)}}+\frac{M_{S}}{M_{S(\max)}}+\frac{M_{V}}{M_{V(\max)}}+\frac{M}{M_{(\max)}} \leq 1 \text { or } 0.8 \text { for stainless steel }
$$

Notes:

1. In heavily loaded bogie type carriages, the bogie swivel bearings can affect life. Applications for bogie carriages in which L_{F} is more than 0.5 , calculated using the *1 load figures from the table see page 1 , should be referred to Hepco to confirm suitability.
2. When calculating L_{2} and M_{s} loadings, the centrifugal force must be included which acts radially outwards from the centre of mass (COM) of the moving object. Its magnitude is $F=D V^{2} / R$, where V is the velocity of the $C O M$ in $m / s, R$ is the distance of the $C O M$ from the ring axis in metres and D is the mass in kg . F is in N (newtons).

Systems with Ring Slides in Bearings

It is usual to space bearings equally around the ring". When calculating the life, the load should be resolved into the direct load components L_{A} and L_{R} and the moment load component M, as shown in the diagram opposite.

System Load Capacities

Capacities are shown for both 'dry' and 'lubricated' conditions - this refers to the bearing and slide ' V ' contact,
 since all bearings are lubricated internally for life.
Values are based on shock-free duty.

Bearing Part Numbers ®	Used with Ring Slides	Number of equally spaced bearings	Dry System (Twin and DR Type Bearings)			Lubricated System (Twin Type Bearings)			Lubricated System (DR Type Bearings)		
			$L_{A(\text { max }}$	$L_{R}($ max $)$	$M($ max $)$	$L_{A(\text { max }}$	$L_{R}($ max $)$	$M_{(\text {max }}$)	$L_{\text {A (max })}$	$L_{R(\text { max }}$	$M_{(\text {max }}$)
			N	N	Nm	N	N	Nm	N	N	Nm
...J13...	R12	3	67	38	$16 \times \varnothing c^{*}$	180	102	$43 \times \varnothing c^{*}$	Not Available		
		4	83	45	$19 \times \varnothing c^{*}$	220	120	$52 \times \varnothing c^{*}$	Not Available		
		Each additional 1	10	6	$2 \times \varnothing c^{\circ}$	43	30	$9 \times \varnothing \mathrm{c}^{-6}$	Not Available		
...J18...	R20 REV RIV	3	135	76	$32 \times \varnothing c^{-6}$	375	170	$90 \times \varnothing c^{-6}$	570	510	$135 \times \varnothing c^{* 6}$
		4	165	90	$39 \times \varnothing c^{*}$	465	200	$108 \times \varnothing c^{\circ}$	700	600	$165 \times \varnothing c^{* 6}$
		Each additional 1	21	13	$4 \times \varnothing c^{\circ}$	90	50	$18 \times \varnothing c^{*}$	135	150	$28 \times \varnothing c^{*}$
...J25...	$\begin{gathered} \text { R25 } \\ \text { RES } \\ \text { RIS } \end{gathered}$	3	300	170	$72 \times \varnothing c^{*}$	960	510	$230 \times \varnothing \mathrm{c}^{* 8}$	1200	1280	$285 \times \varnothing c^{* 6}$
		4	370	200	$87 \times \varnothing c^{* 6}$	1190	600	$278 \times \varnothing c^{* 6}$	1480	1500	$340 \times \varnothing c^{* 6}$
		Each additional 1	48	30	$9 \times \varnothing c^{\circ 6}$	230	150	$48 \times \varnothing c^{*}$	285	375	$60 \times \varnothing c^{*}$
...J34...	$\begin{aligned} & \text { R44 } \\ & \text { REM } \\ & \text { RIM } \end{aligned}$	3	600	340	$140 \times \varnothing \mathrm{c}^{* 8}$	2400	1200	$570 \times \varnothing c^{* 8}$	2700	2550	$640 \times \varnothing c^{*}$
		4	740	400	$170 \times \varnothing c^{*}$	2950	1400	$690 \times \varnothing \mathrm{c}^{*}$	3340	3000	$780 \times \varnothing c^{\circ}$
		Each additional 1	96	60	$19 \times \varnothing c^{*}$	570	350	$120 \times \varnothing \mathrm{c}^{* 8}$	640	750	$135 \times \varnothing c^{*}$
...J54...	$\begin{gathered} \text { R76 } \\ \text { REL } \\ \text { RIL } \end{gathered}$	3	1350	765	$320 \times \varnothing c^{* / 8}$	5400	2740	$1290 \times \varnothing c^{* 6}$	7500	4250	$1800 \times \varnothing c^{*}$
		4	1670	900	$390 \times \varnothing c^{\circ 6}$	6650	3200	$1560 \times \varnothing \mathrm{c}^{* 6}$	9300	5000	$2170 \times \varnothing c^{*}$
		Each additional 1	210	130	$44 \times \varnothing c^{* 6}$	1290	800	$270 \times \varnothing c^{* 6}$	1800	1250	$375 \times \varnothing c^{* 6}$

The L_{R} load capacities for systems using floating bearings 36 of the PRT2 catalogue are the same as is shown above for DR bearings. The $L_{A} \& M$ load capacities for systems using floating bearings are zero (they are free to float in these directions).

To determine the life of this system, first obtain a value for the load factor L_{F} by entering the values for L_{A}, L_{R} and M in respect of the proposed duty into equation [2] below, together with the maximum load capacities from the table above.
[2]

$$
L_{F}=\frac{L_{A}}{L_{A(\text { max })}}+\frac{L_{R}}{L_{R(\text { max })}}+\frac{M}{M_{(\text {max })}} \leq 1 \text { or } 0.8 \text { for stainless steel }
$$

The life is then determined using equations [3] or [4].

No. 3 Load Life Information

Notes:

3. In some applications where the bearings rotate with the load, it may be beneficial to distribute the bearings unequally around the ring. Contact Hepco for application advice.
4. SPEED OF OPERATION. Hepco ring slides, segments and track systems are rated for speeds of $1 \mathrm{~m} / \mathrm{s}$ without lubrication or $5 \mathrm{~m} / \mathrm{s}$ when lubricated, but take care to allow for intertial loads. Greater speeds may be tolerated at reduced loads. Contact Hepco for details.
5. SHORT STROKE OPERATION. If the stroke length is less than five times the bearing outside diameter, then calculate the life as if the stroke is five times the bearing outside diameter.
6. $\varnothing \mathrm{c}$ is ring slide contact diameter in metres (the diameter of the circle through the mid position of the contact points between the bearings and the ring, see below).

Calculating System Life

With L_{F} determined for either a 4 bearing carriage, or for a ring system $\mathbb{C l}$, equations [1]\&[2], the life in km can be calculated using one of the two equations below. In these equations, the Basic Life is taken from the table on the right in respect of the bearings and the lubrication condition applicable.

For dry systems use equation [3]:
[3] System life $(\mathrm{km})=\frac{\mathrm{B}_{\mathrm{L}}}{\left(0.03+0.97 \mathrm{~L}_{\mathrm{F}}\right)^{2}}$

For lubricated systems use equation [4]:
[4] System life $(\mathrm{km})=\frac{\mathrm{B}_{\mathrm{L}}}{\left(0.03+0.97 \mathrm{~L}_{\mathrm{F}}\right)^{3}}$

Bearings	Included in		Basic Life Dry	Basic Life Lubricated
	FCC	$\mathbf{B C P}$		
...J13...	FCC 12	-	40	40
SS...J13...	CR FCC 12	.	30	30
...J18...	FCC 20 ...		50	60
SS...J18...	CR FCC 20 ...		35	45
...J18DR...	FCC 20 ... DR	-	50	60
SS...J18DR...	CR FCC 20 ... DR	-	35	45
...J25...	FCC 25 ...	BCP 25	70	40
SS...J25...	CR FCC $25 . .$.	.	40	25
...J25DR...	FCC 25 ... DR	BCP 25 DR	70	45
SS...J25DR.	CR FCC 25 ... DR		40	35
...J34...	FCC 44 ...	BCP 44	100	70
SS...J34...	CR FCC 44 ...		60	50
...J34DR...	FCC 44 ... DR	BCP 44 DR	100	160
SS...J34DR...	CR FCC $44 . .$. DR	.	60	120
...J54...	FCC 76	BCP 76	150	150
SS...J54...	CR FCC 76	.	100	110
...J54DR...	FCC 76 ... DR	BCP 76 DR	150	280
SS...J54DR...	CR FCC $76 \ldots$... DR		100	220

The above data assumes that steel bearings run on steel rings, and that stainless steel bearings run on stainless steel rings.

Example 1

A track system consists of: $1 \times$ TR44 468 R180C; $1 \times$ TNM44 B870 $2 \times$ AK; $1 \times$ TR44 468 R180C; $1 \times$ TNM44 B870 $2 \times$ AK; $1 \times$ FCC 44468 LB.

The carriage carries a weight such that the mass of the load and the carriage together is a total of 40 kg whose centre of mass is over the middle of the carriage. The centre of the mass is 80 mm above the slide V's. The speed of operation is $0.7 \mathrm{~m} / \mathrm{s}$, and the fixed centre carriage is fitted with lubricators.

The load factor can be calculated using equation [1].

$$
L_{F}=\frac{L_{1}}{L_{1(\max)}}+\frac{L_{2}}{L_{2(\max)}}+\frac{M_{S}}{M_{S(\max)}}+\frac{M_{V}}{M_{V(\max)}}+\frac{M}{M_{(\max)}}
$$

$\mathrm{L}_{1}=40 \mathrm{~kg} \times 9.81 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{~g})=392.4 \mathrm{~N}$
$\mathrm{L}_{2}=$ (centrifugal force see note 2 page 2) $=\mathrm{DV}^{2} / \mathrm{R}$
$\mathrm{L}_{2}=40 \mathrm{~kg} \times(0.7 \mathrm{~m} / \mathrm{s})^{2} \div 0.234 \mathrm{~m}=83.7 \mathrm{~N}$
$M_{s}=\mathrm{L} 2 \times 0.08 \mathrm{~m}=83.7 \times 0.08 \mathrm{~m}=6.7 \mathrm{Nm}$
$M_{V}=M=0$

The values for $L_{1(\max)}, L_{2(\text { max })}$ and $M_{s(\text { max })}$ can be taken directly from the table on 1 ;
For a FCC 44468 LB

$$
\begin{aligned}
\mathrm{L}_{1}(\max) & =3200 \mathrm{~N} \\
\mathrm{~L}_{2}(\max) & =2800 \mathrm{~N} \\
M_{s(\max)} & =64 \mathrm{Nm} \\
\mathrm{~L}_{\mathrm{F}} & =\frac{392.4}{3200}+\frac{83.7}{2800}+\frac{6.7}{64}=0.2572
\end{aligned}
$$

The basic life for this system (FCC 44468 LB includes ...J34.. bearings and is lubricated) is taken for the table on $\mathbb{C D} 3$ - this is 70 km . The system life a calculated using equation [4].

$$
\text { System life }(\mathrm{km})=\frac{\mathrm{B}_{\mathrm{L}}}{\left(0.03+0.97 \mathrm{~L}_{\mathrm{F}}\right)^{3}}=\frac{70}{(0.03+0.97 \times 0.2572)^{3}}=3206 \mathrm{~km}
$$

Example 2

The load factor can be calculated using equation 2 .

$$
L_{F}=\frac{L_{A}}{L_{A(\text { max })}}+\frac{L_{R}}{L_{R(\text { max })}}+\frac{M}{M_{(\text {max })}}
$$

$\mathrm{L}_{\mathrm{A}}=15 \mathrm{~kg} \times 9.81 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{~g})=147.15 \mathrm{~N}$
Speed of the centre of mass: $1 \mathrm{rev} / \mathrm{sec}=2 \times \pi \times 0.15 \mathrm{~m} \times 1=0.942 \mathrm{~m} / \mathrm{s}$
$L_{R}=D V^{2} / R=15 \mathrm{~kg} \times(0.942 \mathrm{~m} / \mathrm{s})^{2} \div 0.15 \mathrm{~m}=88.826 \mathrm{~N}$
$M=L_{R} \times h+L_{A} \times R=88.826 \mathrm{~N} \times 0.2 \mathrm{~m}+147.15 \mathrm{~N} \times 0.15 \mathrm{~m}=39.84 \mathrm{Nm}$

The values for $L_{A(\max)}, L_{R(\max)}$ \& $M_{(\max)}$ can be calculated for the data in table on 2.

$$
\begin{aligned}
& L_{A(\text { max })}=3340 \mathrm{~N}+2 \times 640 \mathrm{~N}=4620 \mathrm{~N} \\
& \mathrm{~L}_{\mathrm{R}(\text { max })}=3000 \mathrm{~N}+2 \times 750 \mathrm{~N}=4500 \mathrm{~N} \\
& M_{(\text {max })}=(780+2 \times 135) \times 0.5085 \mathrm{~m}(\varnothing \mathrm{c} \text { from page } 3)=533.925 \mathrm{Nm}
\end{aligned}
$$

$$
L_{F}=\frac{147.15}{4620}+\frac{88.826}{4500}+\frac{39.84}{533.925}=0.126
$$

The basic life for this system SSBHJR34DR.. lubricated bearings can be taken for the table on 3 - this is 120 km . The system life a calculated using equation [4].

$$
\text { System life }(\mathrm{km})=\frac{\mathrm{B}_{\mathrm{L}}}{\left(0.03+0.97 \mathrm{~L}_{\mathrm{F}}\right)^{3}}=\frac{120}{(0.03+0.97 \times 0.126)^{3}}=33890 \mathrm{~km}
$$

To determine the life of the system in years; 1 revolution $=0.5085 \mathrm{~m} \times \pi=1.5975 \mathrm{~m}$. Each week the system runs for $3600 \mathrm{rev} / \mathrm{hour}$ $\times 36$ hours $=207 \mathrm{~km}$. System life $=33890 \div 207=163.7$ weeks $=3.15$ years .

Example 3

A feeding mechanism incorporates an R44 612 R90 double edge ring segment and FCC 44612 LB DR CHK fixed centre carriage. This mechanism has a paddle which pushes components onto a conveyor via a curved path. The pusher is powered by a rotary actuator which engages on a pin on the centre of the carriage plate, 70 mm above the centre line of the V's. The mass of the carriage assembly is 15 kg and the centre of mass is 70 mm from the centre of the carriage.
When the mechanism is pushing products onto the conveyor, the pushing force Fp is 300 N which acts 100 mm from the centre of the carriage and at a height of 60 mm from the centre of the V's. The length of travel is 150 mm and the system is lubricated by the lubricators fitted to the fixed centre carriage.
The application is slow speed and low acceleration, so the centrifugal and inertia forces can be ignored for the calculations.

$\mathrm{L}_{1}=15 \mathrm{~kg} \times 9.81 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{~g})=147.15 \mathrm{~N}$
$\mathrm{L}_{2}=0$
The reaction force on the carriage $\mathrm{pin}=\mathrm{F}_{\mathrm{p}} \times$ mechanical advantage
$=F_{p} \times$ paddle force radius \div carriage reaction force radius
$=\mathrm{F}_{\mathrm{p}} \times[(306 \mathrm{~mm}+100 \mathrm{~mm}) \div 306 \mathrm{~mm}]=300 \mathrm{~N} \times 1.327=398 \mathrm{~N}$
$\mathrm{M}=398 \mathrm{~N} \times 0.07 \mathrm{~m}-300 \mathrm{~N} \times 0.06 \mathrm{~m}=9.86 \mathrm{Nm}$
$M_{v}=300 \mathrm{~N} \times 0.1 \mathrm{~m}=30 \mathrm{Nm}$
$M_{S}=147.15 \mathrm{~N} \times 0.07 \mathrm{~m}=10.3 \mathrm{Nm}$

The values for $L_{1(\max)}, M_{s(\text { max })}, M_{v(\text { max })}$ and $M_{(\text {max })}$ can be taken directly from the table on $\mathbb{C a d}$;
For a FCC 44612 LB DR

$$
\begin{array}{ll}
\begin{array}{l}
\left.L_{1} \text { (max }\right)=3600 \mathrm{~N} \\
M_{v(\max)}=220 \mathrm{Nm}
\end{array} & \begin{array}{l}
M_{s(\max)}=73 \mathrm{Nm} \\
M_{(\text {max })}=130 \mathrm{Nm}
\end{array} \\
L_{F}=\frac{147.15}{3600}+\frac{9.86}{130}+\frac{30}{220}+\frac{10.3}{73}=0.3942
\end{array}
$$

The basic life for this system (FCC 44612 LB DR includes ...J34DR.. bearings and is lubricated) is taken for the table on $\mathbb{C l a} 3$ - this is 160 km . The system life a calculated using equation [4].

$$
\text { System life }(\mathrm{km})=\frac{\mathrm{B}_{\mathrm{L}}}{\left(0.03+0.97 \mathrm{~L}_{\mathrm{F}}\right)^{3}}=\frac{160}{(0.03+0.97 \times 0.3942)^{3}}=2282 \mathrm{~km}
$$

The linear travel of this application is 150 mm which is less than 5 times the bearing outside diameter ($5 \times \varnothing 34=170 \mathrm{~mm}$, see note 3 , on 1). The system life should therefore be based on 170 mm per stroke; $2281 \mathrm{~km} \div 170 \mathrm{~mm} \approx 13.4$ million strokes

Example 4

A textile cutting machine uses a HepcoMotion double edge track system consisting of $1 \times$ TR76 799 R180 C; $1 \times$ TNL 76 B2040-2 \times AK; $1 \times$ TR76 799 R180 C; $1 \times$ TNL76 B2040 $-2 \times$ AK and $1 \times$ FCC 76799 LB. The fixed centre carriage carries a knife which experiences a resistance force of 250 N at a distance of 100 mm from the carriage centre, and the blade is offset by 60 mm from the centreline of the V's. The carriage is driven by a timing belt which engages a pin in a yoke on the side of the carriage. The line of force is offset by 110 mm from the carriage centre. The carriage and knife assembly weighs 20 kg and travels at $1 \mathrm{~m} / \mathrm{s}$. The knife only cuts while the carriage is on the lower of the two straight slide of the track system.

The load factor can be calculated using equation 1.

$$
L_{F}=\frac{L_{1}}{L_{1(\max)}}+\frac{L_{2}}{L_{2(\max)}}+\frac{M_{S}}{M_{S(\max)}}+\frac{M_{V}}{M_{V(\max)}}+\frac{M}{M_{(\max)}}
$$

$\mathrm{L}_{1}=0$
$\mathrm{L}_{2}=20 \mathrm{~kg} \times 9.81 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{~g})=196.2 \mathrm{~N}$
The friction within the system is negligible therefore, the drive force $\left(F_{d}\right)$ will equal the cutting force $\left(F_{c}\right)$; both equal 250 N $M=\mathrm{Fc} \times 0.06 \mathrm{~m}-\mathrm{Fd} \times 0.025 \mathrm{~m}=250 \times 0.06-250 \times 0.025=8.75 \mathrm{Nm}$
$M_{\mathrm{v}}=\mathrm{Fc} \times 0.1 \mathrm{~m}+\mathrm{Fd} \times 0.11 \mathrm{~m}=250 \times 0.1+250 \times 0.11=52.5 \mathrm{Nm}$
$M_{s}=196.2 \times 0.04=7.848 \mathrm{Nm}$
The values for $L_{2(\max)}, M_{s(\text { max })}, M_{v(\max)}$ and $M_{(\text {max })}$ can be taken directly from the table on 1 ;
For a FCC 76799 LB

$$
\begin{aligned}
& L_{2(\max)=6400 \mathrm{~N}} \quad \begin{array}{l}
M_{v(\max)}=300 \mathrm{Nm} \\
L_{F}=\frac{196.2}{6400}+\frac{7.848}{250}+\frac{52.5}{300}+\frac{8.75}{340}=0.2628 \\
M_{(\text {max })}=340 \mathrm{Nm}
\end{array}
\end{aligned}
$$

The basic life for this system (FCC 76799 LB includes ...J54... bearings and is lubricated) is taken for the table on 3 - this is 150 km . The system life a calculated using equation [4].

$$
\text { System life }(\mathrm{km})=\frac{\mathrm{B}_{\mathrm{L}}}{\left(0.03+0.97 \mathrm{~L}_{\mathrm{F}}\right)^{3}}=\frac{150}{(0.03+0.97 \times 0.2628)^{3}}=6486 \mathrm{~km}
$$

On the double edge ring segments of the track system there is no cutting force and the driving force will be small, but there will be a centrifugal force $=D^{2} / R=20 \mathrm{~kg} \times 1^{2} / 0.3995=50.06 \mathrm{~N}$ plus the weight of the carriage. On the top straight slide there is only the carriage weight acting. The worst case loading anywhere in the system other than on the lower straight slide occurs on the bottom of the ring segments of the track where the various load components are as follows:
$\mathrm{L}_{1}=0$

$$
\begin{aligned}
& \mathrm{L}_{2}=20 \mathrm{~kg} \times 9.81 \mathrm{~m} / \mathrm{s}^{2}+50.06 \mathrm{~N}=246.26 \mathrm{~N} \\
& \mathrm{M}_{\mathrm{s}}=246.26 \mathrm{~N} \times 0.04 \mathrm{~m}=9.85 \mathrm{Nm}
\end{aligned}
$$

$$
M=0
$$

$M_{v}=0$
These figures can be entered into equation [1], giving a LF figure of 0.078 , applying this to equation [4], provides a System life of 127590 km . The life calculations show that the expected life on the section where the cutting takes place is 20 times shorter than the return section of the track, therefore the wear on the return section can be ignored for the purposes of this life prediction.
On this basis the system life can be converted in system revolution as follows;
$6486 \mathrm{~km} \div 2040 \mathrm{~mm} \approx 3.1$ million circuits of the track system.

HepcoMotion ${ }^{\circledR}$, Lower Moor Business Park,
Tiverton Way, Tiverton, Devon, England EX16 6TG
Tel: +44 (0) 1884257000
Fax: +44 (0) 1884243500
E-mail: sales@hepcomotion.com

